Abstract

Recent interest in understanding the effect of interventions on patient-reported outcomes as well as traditional clinical endpoints has led to an expansion of methods for simultaneous modeling of longitudinal and survival data in clinical trials. Such joint models link the multiple outcome measures using an underlying latent structure, typically a collection of individual-level random effects. They can estimate treatment effects separately on different aspects of a disease process, as well as illuminate associations among outcomes and individual variability. In communicating model output to clinicians and patients, it is challenging to convey a meaningful interpretation of multiple treatment effects, complex outcome associations, and important underlying assumptions. This paper presents graphical displays designed to make the output of Bayesian joint models accessible to non-technical audiences, while preserving important methodological features. We emphasize individual-level posterior predictions of longitudinal and survival outcomes, illustrating our methods using patient-reported symptom severity and survival in a clinical trial example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.