Abstract

BackgroundChallenges exist in the clinical treatment of luminal estrogen receptor α (ERα)-positive breast cancers (BCs) both to prevent resistance to endocrine therapy (ET) and to treat ET-resistant metastatic BCs (MBC). Therefore, we evaluated if kinases could be new targets for the treatment of luminal primary and MBCs.Methods ~ 170 kinase inhibitors were applied to MCF-7 cells either with adaptative or genetic resistance to ET drugs and both ERα levels and cell proliferation were measured. Robust-Z-score calculation identified AZD7762 (CHK1/CHK2 inhibitor) as a positive hit. Subsequently, Kaplan–Meier analyses of CHK1 and CHK2 impact on ERα-positive BC patients relapse-free-survival (RFS), bioinformatic evaluations of CHK1 and CHK2 expression and activation status as a function of ERα activation status as well as drug sensitivity studies in ERα-positive BC cell lines, validation of the impact of the ATR:CHK1 and ATM:CHK2 pathways on the control of ERα stability and BC cell proliferation via inhibitor- and siRNA-based approaches, identification of the molecular mechanism required for inhibitor-dependent ERα degradation in BC and the impact of CHK1 and CHK2 inhibition on the 17β-estradiol (E2):ERα signaling, synergy proliferation studies between ET-drugs and clinically relevant CHK1 inhibitors in different luminal BC cell lines, were performed.ResultsA reduced CHK1 expression correlates with a longer RFS in women with ERα-positive BCs. Interestingly, women carrying luminal A BC display an extended RFS when expressing low CHK1 levels. Accordingly, CHK1 and ERα activations are correlated in ERα-positive BC cell lines, and the ATR:CHK1 pathway controls ERα stability and cell proliferation in luminal A BC cells. Mechanistically, the generation of DNA replication stress rather than DNA damage induced by ATR:CHK1 pathway inhibition is a prerequisite for ERα degradation. Furthermore, CHK1 inhibition interferes with E2:ERα signaling to cell proliferation, and drugs approved for clinical treatment of primary and MBC (4OH-tamoxifen and the CDK4/CDK6 inhibitors abemaciclib and palbociclib) exert synergic effects with the CHK1 inhibitors in clinical trials for the treatment of solid tumors (AZD7762, MK8776, prexasertib) in preventing the proliferation of cells modeling primary and MBC.ConclusionsCHK1 could be considered as an appealing novel pharmacological target for the treatment of luminal primary and MBCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.