Abstract
Radiation therapy is one of the most widely used therapies for cancer treatment. A critical step in radiation therapy planning is to accurately delineate all organs at risk (OARs) to minimize potential adverse effects to healthy surrounding organs. However, manually delineating OARs based on computed tomography images is time-consuming and error-prone. Here, we present a deep learning model to automatically delineate OARs in head and neck, trained on a dataset of 215 computed tomography scans with 28 OARs manually delineated by experienced radiation oncologists. On a hold-out dataset of 100 computed tomography scans, our model achieves an average Dice similarity coefficient of 78.34% across the 28 OARs, significantly outperforming human experts and the previous state-of-the-art method by 10.05% and 5.18%, respectively. Our model takes only a few seconds to delineate an entire scan, compared to over half an hour by human experts. These findings demonstrate the potential for deep learning to improve the quality and reduce the treatment planning time of radiation therapy. To keep radiation therapy from damaging healthy tissue, expert radiologists have to segment CT scans into individual organs. A new deep learning-based method for delineating organs in the area of head and neck performs faster and more accurately than human experts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.