Abstract

It is estimated that approximately 30% of ischemic strokes are caused by rupture of plaque in the carotid artery. Development of techniques focusing on identifying plaques that are vulnerable to rupture is thus indispensable for stroke prevention. Recent studies have demonstrated that motion analysis of plaques from B-mode and RF ultrasound (US) image sequences can be used to estimate plaque strain. However, viability of these methods in a clinical setting, with variable acquisition protocols, has not been demonstrated yet. In this paper, we explore the viability of estimating plaque strain from B-mode US images of asymptomatic patients, acquired in a real clinical setting with different acquisition settings, frame rates, and operators. Our proposed strain measures, shear strain rate entropy and variance, combined with the recently reported maximum absolute shear strain rate, show that the plaques fall into two distinct clusters. Moreover, these clusters show good correlations with plaque echolucency and echogenicity. We conclude that B-mode US imaging is a viable tool for characterizing plaque dynamics in clinical environments. In future studies, we plan to implement this method on multi-center studies for longitudinal monitoring of plaque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call