Abstract
BackgroundUrinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management.Methodology/Principal FindingsThe integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both).Conclusion/SignificanceWe successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for multiplexed detection of nucleic acid and protein as the next generation of urinary tract infection diagnostics.
Highlights
Urinary tract infection (UTI) is a common bacterial infection that affects all patient demographics
In an effort to integrate the two assays on a single sensor array under uniform target binding conditions (i.e. 37uC), we examined whether the oligonucleotide probe pairs previously developed for hybridization at 65uC can provide adequate signal strength and specificity at 37uC
We present clinical validation of an electrochemical biosensor array for UTI diagnosis capable of pathogen identification by detection of bacterial 16S rRNA and assessment of pyuria by detection of LTF
Summary
Urinary tract infection (UTI) is a common bacterial infection that affects all patient demographics. For culture and the associated antimicrobial susceptibility testing (AST), urine samples are sent to a clinical microbiological laboratory, which has a typical delay of 2–3 days. Due to this delay, physicians often prescribe antibiotics empirically based on symptoms and historic antimicrobial susceptibility data. Catheterized patients are prone to bacterial colonization in the bladder that may not necessitate treatment (i.e. asymptomatic bacteriuria) but are at a greater risk of infection with resistant pathogens due to frequent exposure to antibiotics [1]. We report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.