Abstract

BackgroundSeveral smart devices are able to detect atrial fibrillation automatically by recording a single-lead electrocardiogram, and have created a work overload at the hospital level as a result of the need for over-reads by physicians. AimTo compare the atrial fibrillation detection performances of the manufacturers’ algorithms of five smart devices and a novel deep neural network-based algorithm. MethodsWe compared the rate of inconclusive tracings and the diagnostic accuracy for the detection of atrial fibrillation between the manufacturers’ algorithms and the deep neural network-based algorithm on five smart devices, using a physician-interpreted 12-lead electrocardiogram as the reference standard. ResultsOf the 117 patients (27% female, median age 65 years, atrial fibrillation present at time of recording in 30%) included in the final analysis (resulting in 585 analyzed single-lead electrocardiogram tracings), the deep neural network-based algorithm exhibited a higher conclusive rate relative to the manufacturer algorithm for all five models: 98% vs. 84% for Apple; 99% vs. 81% for Fitbit; 96% vs. 77% for AliveCor; 99% vs. 85% for Samsung; and 97% vs. 74% for Withings (P<0.01, for each model). When applying our deep neural network-based algorithm, sensitivity and specificity to correctly identify atrial fibrillation were not significantly different for all assessed smart devices. ConclusionIn this clinical validation, the deep neural network-based algorithm significantly reduced the number of tracings labeled inconclusive, while demonstrating similarly high diagnostic accuracy for the detection of atrial fibrillation, thereby providing a possible solution to the data surge created by these smart devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.