Abstract
Spine delineation is essential for high quality radiotherapy treatment planning of spinal metastases. However, manual delineation is time-consuming and prone to interobserver variability. Automatic spine delineation, especially using deep learning, has shown promising results in healthy subjects. We aimed to evaluate the clinical utility of deep learning-based vertebral body delineations for radiotherapy planning purposes. A multi-scale convolutional neural network (CNN) was used for automatic segmentation and labeling. Two approaches were tested: the combined approach using one CNN for both segmentation and labeling, and the sequential approach using separate CNN's for these tasks. Training and internal validation data included 580 vertebrae, external validation data included 202 vertebrae. For quantitative assessment, Dice similarity coefficient (DSC) and Hausdorff distance (HD) were used. Axial slices from external images were presented to radiation oncologists for subjective evaluation. Both approaches performed comparably during the internal validation (DSC: 96.7%, HD: 3.6mm), but the sequential approach proved more robust during the external validation (DSC: 94.5% vs 94.4%, p<0.001, HD: 4.5 vs 7.1mm, p<0.001). Subsequently, subjective evaluation of this sequential approach showed that experienced radiation oncologists could distinguish automatic from human-made contours in 63% of cases. They rated automatic contours clinically acceptable in 77% of cases, compared to 88% of human-made contours. We present a feasible approach for automatic vertebral body delineation using two variants of a multi-scale CNN. This approach generates high quality automatic delineations, which can save time in a clinical radiotherapy workflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.