Abstract

To investigate clinical utility of a new immobilization method in image-guided intensity-modulated radiotherapy (IMRT) for breast cancer patients after radical mastectomy. Forty patients with breast cancer who underwent radical mastectomy and postoperative IMRT were prospectively enrolled. The patients were randomly and equally divided into two groups using both a carbon-fiber support board and a hollowed-out cervicothoracic thermoplastic mask (Group A) and using only the board (Group B). An iSCOUT image-guided system was used for acquiring and correcting pretreatment setup errors for each treatment fraction. Initial setup errors and residual errors were obtained by aligning iSCOUT images with digitally reconstructed radiograph (DRR) images generated from planning CT. Totally 600 initial and residual errors were compared and analyzed between two groups, and the planning target volume (PTV) margins before and after the image-guided correction were calculated. The initial setup errors of Group A and Group B were (3.14±3.07), (2.21±1.92), (2.45±1.92) mm and (3.14±2.97), (2.94±3.35), (2.80±2.47) mm in the left-right (LAT), superior-inferior (LONG), anterior-posterior (VERT) directions, respectively. The initial errors in Group A were smaller than those in Group B in the LONG direction (P < 0.05). No significant difference was found in the distribution of three initial error ranges (≤3 mm, 3-5 mm and > 5 mm) in each of the three translational directions for the two groups (P > 0.05). The residual errors of Group A and Group B were (1.74±1.03), (1.62±0.92), (1.66±0.91) mm and (1.70±0.97), (1.68±1.18), (1.58±0.98) mm in the three translational directions, respectively. No significant difference was found in the residual errors between two groups (P > 0.05). With the image-guided correction, PTV margins were reduced from 8.01, 5.44, 5.45 mm to 3.54, 2.99, 2.89 mm in three translational directions of Group A, respectively, and from 8.14, 10.89, 6.29 mm to 2.67, 3.64, 2.74 mm in those of Group B, respectively. The use of hollowed-out cervicothoracic thermoplastic masks combined with a carbon-fiber support board showed better inter-fraction immobilization than the single use of the board in reducing longitudinal setup errors for breast cancer patients after radical mastectomy during IMRT treatment course, which has potential to reduce setup errors and improve the pretreatment immobilization accuracy for breast cancer IMRT after radical mastectomy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call