Abstract
Wagner proposed a new and simple method to predict dosage of drugs obeying simple Michaelis-Menten elimination kinetics. From his theory the following equation, Dn = Do + 1n (Cd/Co)/S can be derived, which forms the basis of predicting the required dosage (Dn) to obtain a desired steady-state concentration (Cd), using initial steady-state concentration (Co), obtained with initial dose (Do) and a population value of S for the drug. We retrospectively investigated the value of S for phenytoin (PHT) in a population of 55 outpatients who had three or more reliable measurements of the steady-state concentration of PHT in serum, measured while they were taking different daily doses. The value of S for PHT was estimated to be 0.0122759 in Japanese patients. The predictive performance of this equation was compared with Bayesian feedback method (B) using retrospective data from 220 outpatients. This equation yielded mean error (ME) of 0.0, mean absolute error (MAE) of 30.7 and root mean squared error (RMSE) of 40.9 mg/d compared to ME of -2.5, MAE of 30.3 and RMSE of 40.1 mg/d for B method. These results indicate that this equation may be a useful adjunct for prediction of PHT dosage as well as B method. Moreover, the simplicity of the equation allows calculation on a hand-held calculator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.