Abstract

Doctors with various specializations and experience order brain computed tomography (CT) to rule out intracranial hemorrhage (ICH). Advanced artificial intelligence (AI) can discriminate subtypes of ICH with high accuracy. The purpose of this study was to investigate the clinical usefulness of AI in ICH detection for doctors across a variety of specialties and backgrounds. A total of 5702 patients' brain CTs were used to develop a cascaded deep-learning-based automated segmentation algorithm (CDLA). A total of 38 doctors were recruited for testing and categorized into nine groups. Diagnostic time and accuracy were evaluated for doctors with and without assistance from the CDLA. The CDLA in the validation set for differential diagnoses among a negative finding and five subtypes of ICH revealed an AUC of 0.966 (95% CI, 0.955-0.977). Specific doctor groups, such as interns, internal medicine, pediatrics, and emergency junior residents, showed significant improvement with assistance from the CDLA (p= 0.029). However, the CDLA did not show a reduction in the mean diagnostic time. Even though the CDLA may not reduce diagnostic time for ICH detection, unlike our expectation, it can play a role in improving diagnostic accuracy in specific doctor groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.