Abstract
Purpose : To determine the ease of use by clinical staff and reliability of an electronic portal imaging system and evaluate the potential to utilize on-line imaging to assess accuracy of daily patient treatment positioning in radiation therapy. Methods and Materials : A computer controlled fluorescent screen-mirror imaging system was used to acquire online portal images. A physician panel assessed on-line image quality relative to standard portal film. Clinical use of the imager was implemented through a protocol where images were obtained during the first six monitor units of external beam. The images were visually compared to a reference portal and patient setup was adjusted for errors exceeding 5 mm. Subsequent off-line analysis was utilized to give insight into the magnitude of clinical setup error in the visually accepted images. Results : Physician evaluation of on-line image quality with an initial 211 images found that 70% were comparable or superior to standard film portal images. Eighty percent of treatment fields fit completely within the on-line imaging area. Eight percent of on-line images were rejected due to poor image quality. Twelve percent of the daily treatment setups imaged required adjustment overall, but specific field types predictably required more frequent adjustment (pelvic and mantle fields). Off-line analysis of accepted images demonstrates that 18% of the final images had setup errors exceeding 5 mm. Conclusion : On-line imaging facilitated daily portal alignment and verification. Ease of use, almost instantaneous viewing and consistent ability to identify and locate anatomical landmarks imply the potential for on-line imaging to replace film based approaches. Retrospective analysis of daily images reveals that visual assessment of setup is not sufficient for eliminating localization errors. Further improvement is required with respect to detecting localization error and fully encompassing larger field sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.