Abstract

Combining magnetic resonance imaging (MRI) with 2-deoxy-2-F-fluoro-D-glucose positron emission tomography (FDG-PET) data improve the imaging accuracy for detection of Alzheimer disease and related dementias. Integrated FDG-PET-MRI is a recent technical innovation that allows both imaging modalities to be obtained simultaneously from individual patients with cognitive impairment. This report describes the practical benefits and challenges of using integrated FDG-PET-MRI to support the clinical diagnosis of various dementias. Over the past 7 years, we have performed integrated FDG-PET-MRI on >1500 patients with possible cognitive impairment or dementia. The FDG-PET and MRI protocols are the same as current conventions, but are obtained simultaneously over 25 minutes. An additional Dixon MRI sequence with superimposed bone atlas is used to calculate PET attenuation correction. A single radiologist interprets all imaging data and generates 1 report. The most common positive finding is concordant temporoparietal volume loss and FDG hypometabolism that suggests increased risk for underlying Alzheimer disease. Lobar-specific atrophy and FDG hypometabolism patterns that may be subtle, asymmetric, and focal also are more easily recognized using combined FDG-PET and MRI, thereby improving detection of other neurodegeneration conditions such as primary progressive aphasias and frontotemporal degeneration. Integrated PET-MRI has many practical benefits to individual patients, referrers, and interpreting radiologists. The integrated PET-MRI system requires several modifications to standard imaging center workflows, and requires training individual radiologists to interpret both modalities in conjunction. Reading MRI and FDG-PET together increases imaging diagnostic yield for individual patients; however, both modalities have limitations in specificity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call