Abstract

BackgroundMicroelectrode dieletrophoresis capture of live cells has been explored in animal and cellular models ex-vivo. Currently, there is no clinical data available regarding the safety and efficacy of dielectrophoresis (DEP) buffers and microcurrent manipulation in humans, despite copious pre-clinical studies suggesting its safety. The purpose of this study was to determine if DEP isolation of SVF using minimal manipulation methods is safe and efficacious for use in humans using the hand lipotransfer model.MethodsAutologous stromal vascular fraction cells (SVF) were obtained from lipoaspirate by collagenase digestion and centrifugation. The final mixture of live and dead cells was further processed using a custom DEP microelectrode array and microcurrent generator to isolate only live nucleated cells. Lipotransfer was completed using fat graft enhanced with either standard processed SVF (control) versus DEP filtered SVF (experimental). Spectral photography, ultrasound and biometric measurements were obtained at post operatively days 1, 4, 7, 14, 30, 60 and 90.ResultsThe DEP filter was capable of increasing SVF viability counts from 74.3 ± 2.0% to 94.7 ± 2.1%. Surrogate markers of inflammation (temperature, soft tissue swelling, pain and diminished range of motion) were more profound on the control hand. Clinical improvement in hand appearance was appreciated in both hands, though the control hand exclusively sustained late phase erosive skin breaks on post operative day 7. No skin breaks were appreciated on the DEP-SVF treated hand. Early fat engraftment failure was noted on the control hand thenar web space at 3 months post surgery.DiscussionNo immediate hypersensitivity or adverse reaction was appreciated with the DEP-SVF treated hand. In fact, the control hand experienced skin disruption and mild superficial cellulitis, whereas the experimental hand did not experience this complication, suggesting a possible “protective” effect with DEP filtered SVF. Late ultrasound survey revealed larger and more frequent formation of oil cysts in the control hand, also suggesting greater risk of engraftment failure with standard lipotransfer.ConclusionClinical DEP appears safe and efficacious for human use. The DEP microelectrode array was found to be versatile and robust in efficiently isolating live SVF cells from dead cells and cellular debris in a time sensitive clinical setting.

Highlights

  • Microelectrode dieletrophoresis capture of live cells has been explored in animal and cellular models ex-vivo

  • Automated devices for stem cell processing and isolation are of great clinical utility to the growing field of bioengineering and regenerative cellular therapy

  • Adipose derived stem cells (ADSC) in particular have come under greater use and scrutiny in regenerative medicine due to: relative ease of access from liposuction [1], abundance compared to other tissues [2] and lack of controversy [3]

Read more

Summary

Introduction

Microelectrode dieletrophoresis capture of live cells has been explored in animal and cellular models ex-vivo. The purpose of this study was to determine if DEP isolation of SVF using minimal manipulation methods is safe and efficacious for use in humans using the hand lipotransfer model. Automated devices for stem cell processing and isolation are of great clinical utility to the growing field of bioengineering and regenerative cellular therapy. There are commercial devices capable of isolating the SVF [4], no clinical machines to date are capable of separating live versus dead cells. This becomes a particular problem for immediate clinical cellular therapy in that concomitant injection of dead cells contributes to inflammation thereby reducing odds of cell engraftment and transplantation [5]. Removal of dead cells could be achieved with tissue culture incubation and further purification steps, some regulatory agencies, such as the United States Food and Drug Administration, forbid the use of concomitant cell culture for cellular therapy to stay within the required limits of “minimal manipulation” for immediate clinical use [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call