Abstract
SNS24, the Portuguese National Health Contact Center, is a telephone and digital public service that provides clinical services. SNS24 plays an important role in the identification of users’ clinical situations according to their symptoms. Currently, there are a number of possible clinical algorithms defined, and selecting the appropriate clinical algorithm is very important in each telephone triage episode. Decreasing the duration of the phone calls and allowing a faster interaction between citizens and SNS24 service can further improve the performance of the telephone triage service. In this paper, we present a study using deep learning approaches to build classification models, aiming to support the nurses with the clinical algorithm’s choice. Three different deep learning architectures, namely convolutional neural network (CNN), recurrent neural network (RNN), and transformers-based approaches are applied across a total number of 269,654 call records belonging to 51 classes. The CNN, RNN, and transformers-based model each achieve an accuracy of 76.56%, 75.88%, and 78.15% over the test set in the preliminary experiments. Models using the transformers-based architecture are further fine-tuned, achieving an accuracy of 79.67% with Adam and 79.72% with SGD after learning rate fine-tuning; an accuracy of 79.96% with Adam and 79.76% with SGD after epochs fine-tuning; an accuracy of 80.57% with Adam after the batch size fine-tuning. Analysis of similar clinical symptoms is carried out using the fine-tuned neural network model. Comparisons are done over the labels predicted by the neural network model, the support vector machines model, and the original labels from SNS24. These results suggest that using deep learning is an effective and promising approach to aid the clinical triage of the SNS24 phone call services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.