Abstract

Three new FAPI dimers were synthesized by linking two quinoline-based FAPIs with different spacers. The in vitro binding affinity and preclinical small animal PET imaging of the compounds were compared with their monomeric counterparts, FAPI-04 and FAPI-46. The lead compound, [68Ga]Ga -LNC1013, was then evaluated in a pilot clinical PET imaging study involving seven patients with gastrointestinal cancer. The three newly synthesized FAPI homodimers had high binding affinity and specificity in vitro and in vivo. Small animal PET imaging and biodistribution studies showed that [68Ga]Ga-LNC1013 had persistent tumor retention for at least 4h, also higher uptake than the other two dimers and the monomer counterparts, making it the lead compound to enter clinical investigation. In the pilot clinical PET imaging study, seven patients were enrolled. The effective dose of [68Ga]Ga-LNC1013 was 8.24E-03mSv/MBq. The human biodistribution of [68Ga]Ga-LNC1013 demonstrated prominent tumor uptake and good tumor-to-background contrast. [68Ga]Ga-LNC1013 PET imaging showed potential in capturing primary and metastatic lesions and outperforming 18F-FDG PET in detecting pancreatic and esophageal cancers. The SUVmax for lesions with [68Ga]Ga-FAPI-46 decreased over time, whereas [68Ga]Ga-LNC1013 exhibited persistently high tumor uptake from 1 to 4h post-injection. Dimerization is an effective strategy to produce FAPI derivatives with favorable tumor uptake, long tumor retention, and imaging contrast over its monomeric counterpart. We demonstrated that [68Ga]Ga-LNC1013, the lead compound without any piperazine moiety, had superior diagnostic potential over [68Ga]Ga-FAPI-46 and 18F-FDG, suggesting the future potential of LNC1013 for radioligand therapy of FAP-positive cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call