Abstract
Semantic standards and human language technologies are key enablers for semantic interoperability across heterogeneous document and data collections in clinical information systems. Data provenance is awarded increasing attention, and it is especially critical where clinical data are automatically extracted from original documents, e.g. by text mining. This paper demonstrates how the output of a commercial clinical text-mining tool can be harmonised with FHIR, the leading clinical information model standard. Character ranges that indicate the origin of an annotation and machine generates confidence values were identified as crucial elements of data provenance in order to enrich text-mining results. We have specified and requested necessary extensions to the FHIR standard and demonstrated how, as a result, important metadata describing processes generating FHIR instances from clinical narratives can be embedded.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.