Abstract

Liquid profiling uses circulating tumor DNA (ctDNA) for minimal invasive tumor mutational profiling from peripheral blood. The presence of somatic mutations in peripheral blood cells without further evidence of a hematologic neoplasm defines clonal hematopoiesis of indeterminate potential (CHIP). CHIP-mutations can be found in the cell-free DNA (cfDNA) of plasma, are a potential cause of false positive results in liquid profiling, and thus limit its usage in screening settings. Various strategies are in place to mitigate the effect of CHIP on the performance of ctDNA assays, but the detection of CHIP also represents a clinically significant incidental finding. The sequelae of CHIP comprise the risk of progression to a hematologic neoplasm including therapy-related myeloid neoplasms. While the hematological risk increases with the co-occurrence of unexplained blood count abnormalities, a number of non-hematologic diseases have independently been associated with CHIP. In particular, CHIP represents a major risk factor for cardiovascular disease such as atherosclerosis or heart failure. The management of CHIP requires an interdisciplinary setting and represents a new topic in the field of cardio-oncology. In the future, the information on CHIP may be taken into account for personalized therapy of cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call