Abstract
BackgroundFluoxetine hydrochloride is one of the familiar antidepressants of the second generation and has the effect of inhibiting the reuptake of 5-hydroxytryptamine by central nervous system. Both clinical trials and animal experiments show that it has good antidepressant effect, but there are few reports on its clinical efficacy in treating depression patients from the perspective of metabolomics. This study aimed at evaluating the antidepressant effect of fluoxetine hydrochloride by metabolomics, so that to find out its specific biomarkers and related metabolic characteristics of depression in the treatment of depression and analyze the intervention mechanism of fluoxetine hydrochloride in depression. MethodTwenty depression patients and twenty healthy volunteers were recruited in clinical. Using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) to analyze serum metabolites of depression patients pretherapy and post-treatment and compared with healthy people. ResultFinally, we have detected 16 specific biomarkers of depression. Compared with the healthy group, the level of 10 biomarkers in the depression group was significantly increased (P < 0.05) and 6 biomarkers were significantly decreased (P < 0.01). After 8 weeks of fluoxetine hydrochloride treatment, all the biomarkers have showed a tendency of callback. The metabolic pathways involved amino acid metabolism, energy metabolism and lipid metabolism. ConclusionIn our study, the antidepressant effect of fluoxetine hydrochloride in clinic was proved by metabolomics and provided basis for clinical use of fluoxetine hydrochloride. At the same time, the biomarkers that may be related to the occurrence of depression are determined to provide objective basis for the diagnosis of depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.