Abstract

Background: Brain radiotherapy is the standard treatment option for multiple brain metastases (BMs) from non-small cell lung cancer (NSCLC), especially in the absence of a driver mutation. However, the prognosis for such patients remains poor. Apatinib is a potent antiangiogenic compound directed at the vascular endothelial growth factor receptor-2 (VEGFR-2); however, to date, there are no investigations of apatinib concurrent with brain radiotherapy for NSCLC patients with BMs. We report a case of EGFR wild-type and ALK-negative lung adenocarcinoma patient with multiple symptomatic BMs, who received apatinib together with brain radiation therapy. A favorable oncologic outcome was achieved for both brain metastatic lesions and the primary pulmonary tumor.Case Presentation: A 61-year-old female (never smoker) who initially presented with headache and dizziness was diagnosed with lung adenocarcinoma with multiple brain metastasis (cT2aN3M1b stage IV), and was negative for EGFR and ALK. The patient refused to receive chemotherapy and was only amenable to brain radiotherapy and targeted therapy. After approval from the institutional ethics committee, she underwent concurrent oral apatinib (500 mg/day) with whole brain radiation therapy (WBRT) (37.5Gy) with simultaneous in-field boost (49.5Gy) in 15 fractions with image guided intensity-modulated radiotherapy. Three weeks later, neurologic symptoms entirely ceased and a partial response (PR) for the BMs with near-complete resolution of peritumoral brain edema was achieved. Chest CT performed at the same time and showed shrinkage of the lung primary with a PR. The patient suffered grade III oral mucositis one week after brain radiotherapy and refused further apatinib. At 12 months after brain radiotherapy, the brain tumors remained well controlled.Conclusions: This is the first known documentation of a rapid clinical response of apatinib concurrent with brain radiotherapy in a lung adenocarcinoma patient with symptomatic multiple BMs. Apatinib combined with brain radiotherapy could be an alternative treatment option for BMs from NSCLC, especially for those without a driver mutation. Further clinical trials are required to corroborate this discovery.

Highlights

  • Brain metastases (BMs) can occur frequently (22–54%) in nonsmall cell lung cancer (NSCLC) [1, 2] In the past, palliative care was the primary treatment for brain metastatic lesions, with radiation therapy (RT) or surgical treatment considered according to functional status as well as the number and location of metastatic lesions

  • The results showed that VEGFR-1, vascular endothelial growth factor receptor-2 (VEGFR-2), and PDGFR were strongly positive, while c-kit was negative (Figure 3)

  • It indicated that apatinib is a potent effective drug to control brain metastasis when combining with brain radiotherapy, which needed for further clinical trial investigations

Read more

Summary

Background

Brain radiotherapy is the standard treatment option for multiple brain metastases (BMs) from non-small cell lung cancer (NSCLC), especially in the absence of a driver mutation. Apatinib is a potent antiangiogenic compound directed at the vascular endothelial growth factor receptor-2 (VEGFR-2); to date, there are no investigations of apatinib concurrent with brain radiotherapy for NSCLC patients with BMs. We report a case of EGFR wild-type and ALK-negative lung adenocarcinoma patient with multiple symptomatic BMs, who received apatinib together with brain radiation therapy. The patient refused to receive chemotherapy and was only amenable to brain radiotherapy and targeted therapy. After approval from the institutional ethics committee, she underwent concurrent oral apatinib (500 mg/day) with whole brain radiation therapy (WBRT) (37.5Gy) with simultaneous in-field boost (49.5Gy) in 15 fractions with image guided intensity-modulated radiotherapy. The patient suffered grade III oral mucositis one week after brain radiotherapy and refused further apatinib. At 12 months after brain radiotherapy, the brain tumors remained well controlled

Conclusions
INTRODUCTION
DISCUSSION
CONCLUSIONS
ETHICS STATEMENT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.