Abstract

The incidence and mortality of cancer is ever-increasing, which poses a significant challengesto human health and a substantial economic burden to patients. At present, chemotherapy is still a primary treatment for various cancers. However, chemotherapy kills tumors but also induces the related side effects, whichadversely impacting patient quality of life and exacerbating suffering. Therefore, there is an urgent need for new and effective treatments that can control tumor growth while reducing the side effects for patients. Arterial chemoembolization has been attracted much attentionwhich attributed to the advantage of ability to embolize tumor vessels to block blood and nutrition supplies. Thus, to achieve local tumor control, it has become an effective means of local tumor control and has been widely used in clinical practice. Despite its efficacy, conventional arterial chemoembolization techniques, limited by embolization materials, have been associated with incomplete embolization and suboptimal drug delivery outcomes. Gradually, researchers have shifted their attention to a new type of embolic material called CalliSperes® drug-eluting embolic bead (DEB). DEB can not only load high doses of drugs, but also has strong sustained drug release ability and good biocompatibility. The integration of DEBs with traditional arterial chemoembolization (DEB-TACE) promises targeted vascular embolization, mitigated tumor ischemia and hypoxia, and direct intravascular chemotherapy delivery. It can prevent cancer cell differentiation and accelerate their death, meanwhile, directly injecting chemotherapy drugs into the target blood vessels reduced the blood concentration of the whole body, thus reduced the toxic and side effects of chemotherapy. Furthermore, DEB-TACE's sustained drug release capability elevates local drug concentrations at the tumor site, amplifying its antitumor efficacy. Therefore, DEB-TACE has become a hot spot in clinical research worldwide. This review introduces the pathogenesis of solid tumors, the background of research and biological characteristics of DEB, and the action mechanism of DEB-TACE, as well as its clinical research in various solid tumors and future prospects. This review aims to provide new ideas for the treatment of DEB-TACE in various solid tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call