Abstract

Aberrant alternative splicing (AS) contributes to leukemogenesis, but reports on the clinical and biological implications of aberrant AS in acute myeloid leukaemia (AML) remain limited. Here, we used RNA-seq to analyse AS in AML cells from 341 patients, comparing them to healthy CD34+ haematopoietic stem cells (HSCs). Our findings highlight distinct AS patterns in the nuclear transcription factor Y subunit alpha (NFYA) gene, with two main isoforms: NFYA-L (Long) and NFYA-S (Short), differing in exon 3 inclusion. Patients with lower NFYA-L but higher NFYA-S expression, termed NFYA-S predominance, displayed more favourable characteristics and better outcomes following intensive chemotherapy, regardless of age and European LeukemiaNet risk classification, compared to those with higher NFYA-L but lower NFYA-S expression, termed NFYA-L predominance. The prognostic effects were validated using The Cancer Genome Atlas cohort. Transcriptome analysis revealed upregulated cell cycle genes in NFYA-S predominant cases, resembling those of active HSCs, demonstrating relative chemosensitivity. Conversely, NFYA-L predominant cases, as observed in KMT2A-rearranged leukaemia, were associated with relative chemoresistance. NFYA-S overexpression in OCI-AML3 cells promoted cell proliferation, S-phase entry and increased cytarabine sensitivity, suggesting its clinical and therapeutic relevance in AML. Our study underscores NFYA AS as a potential prognostic biomarker in AML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.