Abstract

11beta-hydroxysteroid dehydrogenases (11beta-HSD) are responsible for the conversion of bioactive glucocorticoids to and from inactive metabolites. 11beta-HSD2 is generally considered a high-affinity inactivator of natural glucocorticoids, although its activity with synthetic compounds in vivo is unknown. Inhaled corticosteroids (ICS) remain the primary antiinflammatory agents for treating asthma, but little is known about their metabolism in the lung. The aims of this study were to determine whether the 11beta-HSD2 enzyme can be localized to human airway tissue and whether differential expression of this enzyme relates to asthma severity and ICS needs. We studied airway biopsy specimens from 22 asthmatic subjects, in two groups: (1) a group not treated with ICS (n = 7); and (2) a group treated with ICS (range: 200 to 1,500 microg/d; n = 15). A control population consisted of nine nonasthmatic subjects. Immunostaining was done with an immunopurified antibody to human 11beta-HSD2. Immunoreactivity was generally localized to the endothelium of vessels in the lamina propria and to airway epithelium both in asthmatic patients and nonasthmatic controls. There was a statistically significant inverse relationship between the ICS dose required for effective treatment and the extent of epithelial 11beta-HSD2 staining (r = -0.44; p = 0.04). This is consistent with 11beta-HSD2 acting as an oxidoreductase that regenerates rather than inactivates ICS. This study suggests that glucocorticoid sensitivity in the lung is not determined by ICS breakdown, but may be related to 11beta-HSD2 sustaining the activation of synthetic glucocorticoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.