Abstract

The minimal inhibitory concentrations (MIC) of cephalexin, cephradine, cefaclor, cefatrizine and cefadroxil for Salmonella species, Escherichia coli and Pasteurella multocida isolated previously from young calves were determined. The MIC90 values for cephalexin, cephradine and cefadroxil ranged between 3.12 micrograms ml-1 and 12.5 micrograms ml-1, whereas those of cefatrizine and cefaclor were 3.12 micrograms ml-1 and 0.78 microgram ml-1, respectively. Each drug was administered intravenously and orally to groups of pre-ruminating calves and orally to early ruminating calves. Although the pharmacokinetic characteristics of the drugs after intravenous injection were similar to other beta-lactam antibiotics, significant differences between the cephalosporins examined were found in respect of certain kinetic parameters. The drugs showed rapid absorption into the systemic circulation after oral administration to pre-ruminating calves but the elimination half-life values (t1/2 beta) varied between three hours (cefaclor and cefadroxil) and nine hours (cefatrizine). The bioavailability of the drugs was about 35 per cent of the administered dose. Co-administration of probenecid with each antibiotic caused a twofold or greater increase in peak serum drug concentrations (Cmax) but the effect on t1/2 beta was variable. Cephalexin, cephradine and cefaclor given to the ruminating calves resulted in very low serum or plasma concentrations and their use should be restricted to younger calves. Cefadroxil was found to give the highest serum concentrations in this age group but had significantly lower bioavailability when compared with the unweaned calves. Provisional oral dosage regimens were computed for each cephalosporin on the basis of the MIC data and the kinetic parameters derived from intravenous and oral drug administration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.