Abstract
ObjectiveThis study aimed to elucidate whether growth hormone (GH) adjuvant therapy significantly improves clinical outcomes for expected poor responders in frozen-thawed cycles.MethodsExpected poor responders undergoing controlled ovarian stimulation with or without GH adjuvant therapy, and subsequently underwent the first frozen-thawed transfer from January 2017 to March 2020 were retrospectively reviewed. Maternal age was matched at a 1:1 ratio between the GH and control groups. All statistical analyses were performed with the Statistical Package for the Social Sciences software.ResultsA total of 376 frozen-thawed cycles comprised the GH and control groups at a ratio of 1:1. The number of oocytes (7.13 ± 3.93 vs. 5.89 ± 3.33; p = 0.001), two pronuclei zygotes (4.66 ± 2.76 vs. 3.99 ± 2.31; p = 0.011), and day 3 available embryos (3.86 ± 2.62 vs. 3.26 ± 2.04; p = 0.014) obtained in the GH group was significantly higher than the control group in corresponding fresh cycles. The clinical pregnancy (30.3 vs. 31.0%; p = 0.883), implantation (25.3 vs. 26.2%; p = 0.829), early abortion (16.1 vs. 15.8%; p = 0.967), and live birth rates (20.6 vs. 20.8%; p=0.980) were comparable between the two groups in frozen-thawed cycles. Improvement in the clinical pregnancy (46.8 vs. 32.1%; p = 0.075), early miscarriage (10.3 vs. 20.0%; p = 0.449), and live birth rates (35.7 vs. 18.9%; p = 0.031) was found in the subgroup of poor ovarian responders (PORs) with good quality blastocyst transfer (≥4BB) following GH co-treatment.ConclusionsGH administration would increase oocyte quantity and quality, in turn, improve live birth rate in PORs.
Highlights
As part of in vitro fertilization (IVF)/intracytoplasmic sperm injection treatment, controlled ovarian stimulation (COS) was performed with exogenous follicle-stimulating hormone to obtain a sufficient number of oocytes and good quality embryos for transfer [1]
Improvement in the clinical pregnancy (46.8 vs. 32.1%; p = 0.075), early miscarriage (10.3 vs. 20.0%; p = 0.449), and live birth rates (35.7 vs. 18.9%; p = 0.031) was found in the subgroup of poor ovarian responders (PORs) with good quality blastocyst transfer (≥4BB) following growth hormone (GH) co-treatment
Because PORs are highly heterogeneous and GH addition protocol varies from center-to-center, the efficacy of GH in improving pregnancy and live birth rate has been widely debated for a long time
Summary
As part of in vitro fertilization (IVF)/intracytoplasmic sperm injection treatment, controlled ovarian stimulation (COS) was performed with exogenous follicle-stimulating hormone to obtain a sufficient number of oocytes and good quality embryos for transfer [1]. There are still women who have a poor response to COS [poor ovarian responders (PORs)], resulting in only a few oocytes at the time of retrieval, a small number of embryos for transfer, a reduced pregnancy rate, and a higher treatment discontinuation rate [2,3,4,5,6]. The feasibility of growth hormone (GH) adjuvant therapy is based on the GH requirement for follicular development and ovulation [7, 8]. Previous studies from PIVET medical center, which showed a beneficial effect of GH adjuvant therapy on pregnancy and live birth rates in fresh and frozen cycles with poor prognosis patients [10, 11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.