Abstract
The detection rate of early-stage lung cancer with ground-glass opacity (GGO) has increased, and stereotactic body radiotherapy (SBRT) has been suggested as an alternative to surgery in inoperable patients. However, reports on treatment results are limited. Therefore, we performed a retrospective study to investigate the clinical outcome after SBRT in patients with early-stage lung cancer with GGO-predominant tumor lesions at a single institution. This study included 89 patients with 99 lesions who were treated with SBRT for lung cancer with GGO-predominant lesions that had a consolidation-to-tumor ratio of ≤0.5 at Asan Medical Center between July 2016 and July 2021. A median total dose of 56.0 Gy (range, 48.0-60.0) was delivered using 10.0-15.0 Gy per fraction. The overall follow-up period for the study was median 33.0 months (range, 9.9 to 65.9 months). There was 100% local control with no recurrences in any of the 99 treated lesions. Three patients had regional recurrences outside of the radiation field, and three had distant metastasis. The 1-year, 3-year, and 5-year overall survival rates were 100.0%, 91.6%, and 82.8%, respectively. Univariate analysis revealed that advanced age and a low level of diffusing capacity of the lungs for carbon monoxide were significantly associated with overall survival. There were no patients with grade ≥3 toxicity. SBRT is a safe and effective treatment for patients with GGO-predominant lung cancer lesions and is likely to be considered as an alternative to surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.