Abstract
Between 10 and 25% patients are hospitalized or visit emergency department (ED) during home healthcare (HHC). Given that up to 40% of these negative clinical outcomes are preventable, early and accurate prediction of hospitalization risk can be one strategy to prevent them. In recent years, machine learning-based predictive modeling has become widely used for building risk models. This study aimed to compare the predictive performance of four risk models built with various data sources for hospitalization and ED visits in HHC. Four risk models were built using different variables from two data sources: structured data (i.e., Outcome and Assessment Information Set (OASIS) and other assessment items from the electronic health record (EHR)) and unstructured narrative-free text clinical notes for patients who received HHC services from the largest non-profit HHC organization in New York between 2015 and 2017. Then, five machine learning algorithms (logistic regression, Random Forest, Bayesian network, support vector machine (SVM), and Naïve Bayes) were used on each risk model. Risk model performance was evaluated using the F-score and Precision-Recall Curve (PRC) area metrics. During the study period, 8373/86,823 (9.6%) HHC episodes resulted in hospitalization or ED visits. Among five machine learning algorithms on each model, the SVM showed the highest F-score (0.82), while the Random Forest showed the highest PRC area (0.864). Adding information extracted from clinical notes significantly improved the risk prediction ability by up to 16.6% in F-score and 17.8% in PRC. All models showed relatively good hospitalization or ED visit risk predictive performance in HHC. Information from clinical notes integrated with the structured data improved the ability to identify patients at risk for these emergent care events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.