Abstract
Raised activity of the LH axis caused by activating mutations of LH receptor gene presents with precocious puberty in boys, analogous to the presentation of LH secreting pituitary adenomas (Faggiano et al., 1983; Ambrosi et al., 1990). LH "hyperactivity' in females appears to have no effect. Hyperactivity of the FSH axis caused by activating mutations of the FSH receptor gene might parallel the presentation of FSH secreting pituitary adenomas with Sertoli cell hypertrophy in men (Heseltine et al., 1989) or reversible premature ovarian failure in women (Moses et al., 1986; Okuda et al., 1989). Indeed the first such case to be described is a male who maintained testicular volume and fertility in the absence of gonadotrophins (Gromoll et al., 1996). Female precocious puberty may require hyperactivity of both gonadotrophin axes because of the "two-cell' arrangement required for ovarian oestrogen production. Mutations of the Gs alpha-subunit gene can mimic this situation in some women with the McCune-Albright syndrome (Malchoff et al., 1994). Lack of LH activity caused by defects in the LH beta molecule causes infertility in men and that resulting from inactivating mutations of the LH receptor gene causes Leydig cell agenesis in men while ovarian development in females is relatively normal. Lack of FSH activity caused by defects in the FSH beta caused infertility in a female, and that caused by inactivating mutations of the FSH receptor gene causes ovarian dysgenesis in women but only variable depression of spermatogenesis in men. Incidentally, this categorization of reproductive disorders may also be applied to the TSH axis. Pituitary adenomas and activating mutations of the TSH receptor gene (Parma et al., 1993) cause hyperthyroidism and TSH beta gene defects (Hayashizaki et al., 1989) and inactivating mutations of the TSH receptor gene (Sunthornthepvarakul et al., 1995) cause hypothyroidism. To complete the analogy with thyroid disorders, it is curious that despite structural similarities with the TSH receptor, neither LH nor FSH receptor autoantibodies have a prominent role in ovarian pathophysiology (Moncayo et al., 1989; Van Weissenbruch et al., 1991; Simoni et al., 1993). Complete gonadotrophin resistance is likely to be very rare, however, so what are we likely to find in partial gonadotrophin resistance? Might the "resistant ovary syndrome' come right in the end, with corresponding minor FSH receptor mutations? Experience with insulin and androgen resistance syndromes suggests that such a scenario is unlikely. Insulin receptor gene mutations are found in extreme Type A insulin resistance but not in moderate forms of insulin resistance (O'Rahilly et al., 1991). Androgen receptor gene mutations are found in nearly all cases of complete androgen insensitivity but rarely in partial forms (Patterson et al., 1994). Mild resistance to hormone action is rarely detectable in relatives who are heterozygous for receptor mutations which are inherited in a recessive pattern. It seems unlikely therefore, that individuals heterozygous for inactivating receptor mutations will manifest symptoms of reproductive disorders and account for common conditions. Thus, while mutation analysis provides new insights into the gender specific role of the gonadotrophins the cause of early gonadal failure in the majority of individuals remains a mystery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.