Abstract
X-ray detectors based on single crystal diamond film made via chemical vapor deposition were investigated to evaluate their performance under clinically relevant conditions for radiotherapy dosimetry. Studies focused on repeatability, dose rate dependence, tissue phantom ratios, output factors and beam profiling. Repeatability experiments revealed a temporary loss in sensitivity due to charge detrapping effects following irradiation, which was modeled to make corrections that improved short-term precision. Dose rate dependence was observed (Fowler fitting parameter Δ = 0.96 ± 0.2) using dose rates up to ∼2 Gy min^−1. The detector statistically distinguished (n = 5, P < 0.05) between dose values separated by 7.7 × 10^−3 Gy (1 MU). Depth dose measurements from 1 to 15 cm and output factors using 3 × 3 to 10 × 10 cm^2 field sizes compared well with a Farmer ion chamber (<1.3% difference). Output factor measurements indicate encouraging results for fields sizes <4 × 4 cm^2. Off-axis measurements showed that perturbation of the beam could be reduced when the detector is used in the edge-on orientation due to its thin-film sandwich configuration and ∼200 nm thick Ag contacts. This relatively inexpensive detector has potential to be used for routine dosimetry using conventional radiotherapy instrumentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.