Abstract

BackgroundSignificant advances in the molecular profiling of gliomas, led the 2016 World Health Organization (WHO) Classification to include, for the first-time, molecular biomarkers in glioma diagnosis: IDH mutations and 1p/19q codeletion. Here, we evaluated the effect of this new classification in the stratification of gliomas previously diagnosed according to 2007 WHO classification. Then, we also analyzed the impact of TERT promoter mutations, PTEN deletion, EGFR amplification and MGMT promoter methylation in diagnosis, prognosis and response to therapy in glioma molecular subgroup.MethodsA cohort of 444 adult gliomas was analyzed and reclassified according to the 2016 WHO. Mutational analysis of IDH1 and TERT promoter mutations was performed by Sanger sequencing. Statistical analysis was done using SPSS Statistics 21.0.ResultsThe reclassification of this cohort using 2016 WHO criteria led to a decrease of the number of oligodendrogliomas (from 82 to 49) and an increase of astrocytomas (from 49 to 98), while glioblastomas (GBM) remained the same (n = 256). GBM was the most common diagnosis (57.7%), of which 55.2% were IDH-wildtype. 1p/19q codeleted gliomas were the subgroup associated with longer median overall survival (198 months), while GBM IDH-wildtype had the worst outcome (10 months). Interestingly, PTEN deletion had poor prognostic value in astrocytomas IDH-wildtype (p = 0.015), while in GBM IDH-wildtype was associated with better overall survival (p = 0.042) as well as MGMT promoter methylation (p = 0.009). EGFR amplification and TERT mutations had no impact in prognosis. Notably, EGFR amplification predicted a better response to radiotherapy (p = 0.011) and MGMT methylation to chemo-radiotherapy (p = 0.003).ConclusionIn this study we observed that the 2016 WHO classification improved the accuracy of diagnosis and prognosis of diffuse gliomas, although the available biomarkers are not enough. Therefore, we suggest MGMT promoter methylation should be added to glioma classification. Moreover, we found two genetic/clinical correlations that must be evaluated to understand their impact in the clinical setting: i) how is PTEN deletion a favorable prognostic factor in GBM IDH wildtype and an unfavorable prognostic factor in astrocytoma IDH wildtype and ii) how EGFR amplification is an independent and strong factor of response to radiotherapy.

Highlights

  • Significant advances in the molecular profiling of gliomas, led the 2016 World Health Organization (WHO) Classification to include, for the first-time, molecular biomarkers in glioma diagnosis: Isocitrate dehydrogenase (IDH) mutations and 1p/ 19q codeletion

  • The impact of 2016 WHO classification in the stratification of diffuse gliomas The reorganization of diffuse gliomas according to 2016 WHO classification mainly affected oligodendroglioma and astrocytoma subgroups, reducing the number of oligodendrogliomas (82 to 49) and increasing the astrocytomas (49 to 98), while the number of GBM remained the same (Table 1)

  • The frequency of Telomerase Reverse Transcriptase (TERT) promoter mutations, Epidermal Growth Factor Receptor (EGFR) amplification, Phosphatase and Tensin homologue (PTEN) deletion and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in molecular glioma subgroups Following the reclassification of gliomas according to the 2016 WHO classification, we investigated the role of TERT promoter mutations, EGFR amplification, PTEN deletion and MGMT promoter methylation in molecular glioma subgroups

Read more

Summary

Introduction

Significant advances in the molecular profiling of gliomas, led the 2016 World Health Organization (WHO) Classification to include, for the first-time, molecular biomarkers in glioma diagnosis: IDH mutations and 1p/ 19q codeletion. Improvements in molecular techniques have been important tools to update the knowledge about the genetic profile of gliomas These progresses, led in 2016, the World Health Organization (WHO) classification of Central Nervous System Tumors to include Isocitrate dehydrogenase (IDH) mutations and 1p/19q codeletion as central biomarkers for the diagnosis of diffuse gliomas [4]. This new classification breaks the principle of diagnosis based exclusively on microscopy, allowing a more accurate determination of the patient’s prognosis [4, 5]. Different potential biomarkers for diffuse gliomas have been proposed, such as: TERT (telomerase reverse transcriptase) promoter mutations, amplification/mutations in EGFR (epidermal growth factor receptor) gene, mutations/ deletions in PTEN (phosphatase and tensin homologue) and MGMT (O-6-methylguanine-DNA methyltransferase) promoter methylation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call