Abstract

Despite growing enthusiasm surrounding the utility of clinical informatics to improve cancer outcomes, data availability remains a persistent bottleneck to progress. Difficulty combining data with protected health information often limits our ability to aggregate larger more representative datasets for analysis. With the rise of machine learning techniques that require increasing amounts of clinical data, these barriers have magnified. Here, we review recent efforts within clinical informatics to address issues related to safely sharing cancer data. We carried out a narrative review of clinical informatics studies related to sharing protected health data within cancer studies published from 2018-2022, with a focus on domains such as decentralized analytics, homomorphic encryption, and common data models. Clinical informatics studies that investigated cancer data sharing were identified. A particular focus of the search yielded studies on decentralized analytics, homomorphic encryption, and common data models. Decentralized analytics has been prototyped across genomic, imaging, and clinical data with the most advances in diagnostic image analysis. Homomorphic encryption was most often employed on genomic data and less on imaging and clinical data. Common data models primarily involve clinical data from the electronic health record. Although all methods have robust research, there are limited studies showing wide scale implementation. Decentralized analytics, homomorphic encryption, and common data models represent promising solutions to improve cancer data sharing. Promising results thus far have been limited to smaller settings. Future studies should be focused on evaluating the scalability and efficacy of these methods across clinical settings of varying resources and expertise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.