Abstract

BackgroundPrognostic value or clinical implications of fluid status monitoring in liver cirrhosis are not fully elucidated. Tolvaptan, an orally available, selective vasopressin V2-receptor antagonist approved for hyponatremia in the United States and European Union. It is also used for cirrhotic ascites at a relatively low dose (3.75 mg to 7.5 mg) in Japan, exerts its diuretic function by excreting electrolyte-free water. We hypothesized that bioimpedance-defined dynamic changes in fluid status allow prediction of response of V2 antagonism and survival in cirrhotic patients.MethodsIn this prospective observational study, 30 patients with decompensated liver cirrhosis who were unresponsive to conventional diuretics were enrolled. Detailed serial changes of body composition that were assessed by using non-invasive bioimpedance analysis (BIA) devices, along with biochemical studies, were monitored at 5 time points.ResultsSixteen patients were classified as short-term responders (53%). Rapid and early decrease of BIA-defined intracellular water, as soon as 6 h after the first dose (ΔICWBIA%-6 h), significantly discriminated responders from non-responders (AUC = 0.97, P < 0.0001). ΔICWBIA%-6 h was highly correlated with the change of BIA-derived phase angle of trunk, e.g. reduced body reactance operated at 50 kHz after 24 h of the first dose of tolvaptan. Lower baseline blood urea nitrogen and lower serum aldosterone were predictive of a rapid and early decrease of ICWBIA. A rapid and early decrease of ICWBIA in response to tolvaptan was also predictive of a better transplant-free survival.ConclusionsBIA-defined water compartment monitoring may help predict short-term efficacy and survival in decompensated cirrhotic patients treated with tolvaptan.

Highlights

  • Prognostic value or clinical implications of fluid status monitoring in liver cirrhosis are not fully elucidated

  • bioimpedance analysis (BIA) has been showed to be an adequate tool for evaluation of total body water (TBW) and extracellular water (ECW) in cirrhotic patients with ascites, [6, 7] and has been reported to assess body cell mass (BCM) after trans-jugular intrahepatic porto-systemic shunt (TIPS) in liver cirrhosis [8]

  • It is note-worthy that the main purpose of this study is to find out the usefulness of fluid status monitoring after vasopressin 2 (V2) antagonism in cirrhotic patients, rather than to prove the usefulness of a V2 antagonist itself, since a previous study [18] has proved this point

Read more

Summary

Introduction

Prognostic value or clinical implications of fluid status monitoring in liver cirrhosis are not fully elucidated. Malnutrition, systemic inflammation, and exaggerated activation of the renin-angiotensin-aldosterone system (RAAS) [10] play roles in the pathogenesis of cirrhotic ascites These factors are common pathophysiological features of fluid control in hemodialysis patients due to chronic renal failure. Body composition and fluid status monitoring assessed by non-invasive BIA, especially intracellular water (ICW), have been shown to be of prognostic value in acute decompensated heart failure, [11] acute kidney injury under continuous hemodiafiltration, [12] and patients with chronic renal failure under hemodialysis [13, 14]. In decompensated liver cirrhosis, the prognostic value and clinical implications of fluid status monitoring are not fully elucidated.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.