Abstract

Shortening the turn-around time (TAT) of positive blood culture (BC) identification (ID) and susceptibility results is essential to optimize antimicrobial treatment in patients with sepsis. We aimed to evaluate the impact on antimicrobial prescription of a modified workflow of positive BCs providing ID and partial susceptibility results for Enterobacteriaceae (EB), Pseudomonas aeruginosa and Staphylococcus aureus on the day of BC positivity detection. This study was divided into a pre-intervention period (P0) with a standard BC workflow followed by 2 intervention periods (P1, P2) with an identical modified workflow. ID was performed with MALDI-TOF MS from blood, on early or on overnight subcultures. According to ID results, rapid phenotypic assays were realized to detect third generation cephalosporin resistant EB/P. aeruginosa or methicillin resistant S. aureus. Results were transmitted to the antimicrobial stewardship team for patient’s treatment revision. Times to ID, to susceptibility results and to optimal antimicrobial treatment (OAT) were compared across the three study periods. Overall, 134, 112 and 154 positive BC episodes in P0, P1 and P2 respectively were included in the analysis. Mean time to ID (28.3 hours in P0) was reduced by 65.3% in P1 (10.2 hours) and 61.8% in P2 (10.8 hours). Mean time to complete susceptibility results was reduced by 27.5% in P1 and 27% in P2, with results obtained after 32.4 and 32.6 hours compared to 44.7 hours in P0. Rapid tests allowed partial susceptibility results to be obtained after a mean time of 11.8 hours in P1 and 11.7 hours in P2. Mean time to OAT was decreased to 21.6 hours in P1 and to 17.9 hours in P2 compared to 36.1 hours in P0. Reducing TAT of positive BC with MALDI-TOF MS ID and rapid susceptibility testing accelerated prescription of targeted antimicrobial treatment thereby potentially improving the patients’ clinical outcome.

Highlights

  • Sepsis is a frequent and severe condition associated with high morbidity and mortality rates

  • The study included a total of 847 positive blood cultures counting for 272, 266 and 309 episodes during P0, period 1 (P1) and period 2 (P2), respectively (Fig 2)

  • No carbapenem-resistant EB were isolated in any study period and a single carbapenemresistant P. aeruginosa isolate was identified in P1

Read more

Summary

Introduction

Sepsis is a frequent and severe condition associated with high morbidity and mortality rates. According to the US Centers of Disease Control and Prevention, with over 1 million cases of sepsis occurring each year, sepsis is the ninth leading cause of disease-related deaths in the USA [1]. Prevention, rapid accurate diagnostic tests and innovative treatments constitute the key interventions of a multimodal approach aimed to improve sepsis outcome. The clinical laboratory plays a key role in the diagnosis of bloodstream infections (BSI) and reducing time to identification and susceptibility is a major goal. The rapid availability of results should allow early administration of targeted antimicrobial treatment hereby potentially improving clinical outcome and reducing length of hospital stay and associated costs [2]. More rapid optimal therapy limits antibiotic use and the development of resistance [3,4]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.