Abstract

BackgroundIdiopathic hypogonadotropic hypogonadism (IHH) is a type of congenital disease caused by a variety of gene variants leading to dysfunction in the secretion of hypothalamic gonadotropin-releasing hormones (GnRHs). Clinically, IHH can be divided into Kallmann syndrome (KS) with dysosmia and normosmic idiopathic hypogonadotropic hypogonadism (nIHH) according to the presence or absence of an olfactory disorder.MethodsWe retrospectively evaluated 25 IHH patients (8 KS and 17 nIHH) who were diagnosed at the Department of Endocrinology of Shanghai Children’s Hospital from 2015 to 2021. We analysed the patients’ clinical data, including their hormone levels and gene sequences.ResultsAll male patients exhibited small phalli, and 35% of them exhibited cryptorchidism. A significant difference was observed in the levels of dihydrotestosterone (DHT) after human chorionic gonadotropin (HCG) stimulation (P = 0.028) between the KS group and the nIHH group. Missense variants were the major cause of IHH, and the main pathogenic genes were FGFR1, PROKR2/PROK2, and KAl1. Nine reported and 13 novel variants of six genes were identified. De novo variants were detected in 16 IHH patients; eight patients inherited the variants from their mothers, while only three patients inherited variants from their fathers. One patient had both KAl1 and PROKR2 gene variants, and another patient had two different PROKR2 gene variants. These two patients both had the hot spot variant c.533G > C (p. Trp178Ser) of the PROKR2 gene.ConclusionIHH should be highly suspected in patients with a small phallus and cryptorchidism. Compared with nIHH patients, KS patients exhibited a higher level of DHT after HCG stimulation. Missense variants were the major cause of IHH, and most of the inherited variants were from their mothers who exhibited no obvious clinical symptoms. We identified 9 reported variants and 13 novel variants that led to IHH. A small proportion of patients were at risk of inheriting either the oligogenic variant or the compound heterozygous variant. The hot spot variant c.533G > C (p. Trp178Ser) of PROKR2 might be involved in oligogenic inheritance and compound heterozygous inheritance. These findings provide deeper insight into the diagnosis and classification of IHH and will contribute to its clinical assessment.

Highlights

  • Idiopathic hypogonadotropic hypogonadism (IHH) is a type of congenital disease caused by a variety of gene variants leading to dysfunction in the secretion of hypothalamic gonadotropin-releasing hormones (GnRHs)

  • No significant difference between the Kallmann syndrome (KS) and normosmic idiopathic hypogonadotropic hypogonadism (nIHH) groups was observed in the levels of anti-Mullerian hormone (AMH), inhibin B (INHB), sex hormone-binding globulin (SHBG), basal luteinizing hormone (LH), basal follicle-stimulating hormone (FSH), basal DHT, peak LH, peak FSH, or T after human chorionic gonadotropin (HCG) stimulation

  • We described the clinical characteristics of Chinese IHH patients and the variant frequency of known pathogenic genes

Read more

Summary

Introduction

Idiopathic hypogonadotropic hypogonadism (IHH) is a type of congenital disease caused by a variety of gene variants leading to dysfunction in the secretion of hypothalamic gonadotropin-releasing hormones (GnRHs). IHH can be divided into Kallmann syndrome (KS) with dysosmia and normosmic idiopathic hypogonadotropic hypogonadism (nIHH) according to the presence or absence of an olfactory disorder. Idiopathic hypogonadotropic hypogonadism (IHH), known as congenital hypogonadotropic hypogonadism (CHH), is caused by insufficient production or secretion of hypothalamic gonadotropin-releasing hormone (GnRH) [1]. IHH can be divided into Kallmann syndrome (KS) with dysosmia and normosmic idiopathic hypogonadotropic hypogonadism (nIHH) depending on the absence or presence of olfactory disorders. Due to the low prevalence of IHH, only a few detailed studies on its basic clinical characteristics, related congenital malformations, hormone levels, and gene variants have been conducted using teenagers. We aimed to retrospectively evaluate the clinical manifestations, genotypes, and serum hormones of 25 IHH patients in whom gene variants were identified to better understand the mechanism underlying the development of IHH

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call