Abstract

Sperm DNA fragmentation is common in infertile male. Besides, sperm DNA integrity is essential for fertilization and healthy offspring development. Numerous genetic and environmental elements are associated with impacting sperm DNA integrity negatively. Such as lifestyle, ageing, industrial toxins, and infection. The mechanisms behind SDF are many, but apoptosis and reactive oxygen species are considered the main SDF mechanisms. The management of male infertility has led to the desire for more advanced SDF diagnostic tools to diagnose sperm DNA. Numerous sperm DNA damage assays such as terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) assay and in situ nick translation (ISNT) are available to enhance SDF diagnosing and ultimately to better SDF management. Clinical SDF can lead to a low pregnancy rate, defects in embryo development and impaired offspring health. Moreover, SDF can impact the effectiveness of assisted reproductive technology through transfer genetics impartment to the embryo b in vitro fertilization or intracytoplasmic sperm injection. SDF can be mange through lifestyle changing, treating existing infection in the male reproductive tract and reactive oxygen species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.