Abstract

BackgroundCovid-19 has dramatically increased the number of admissions in intensive care units due to respiratory complications. In some cases, the arousal of neurological impairments, such as peripheral neuropathies, have been revealed. The purpose of this research was to characterize the gait pattern and muscle activity changes in Covid-19 survivors compared to physiological gait. MethodsTwelve post-Covid-19 participants admitted to intensive care units and twelve non-disabled controls were considered. Kinematics, kinetics and surface electromyographic data were collected for each participant during walking. Post Covid-19 participants were further divided into two sub-groups, according to the number of days spent in the intensive care units. Lower limb joint angles, moments and powers were extracted as well as the muscle activity of four muscles bilaterally, the spatial, temporal and spatiotemporal parameters of gait and the ground reaction forces. The extracted variables were compared through OneWay-ANOVA or Kruskal-Wallis tests where appropriate (p < 0.05). FindingsOverall, the considered parameters revealed statistically significant reduction in gait speed, cadence, range of motion in the sagittal plane, anteroposterior and vertical ground reaction forces between pathological and control participants. Larger alterations of the gait patterns were highlighted in the post-Covid-19 group hospitalized in intensive care units longer than 35 days, where a reduced muscle activity was observed on all the analyzed muscles. InterpretationResults suggested that the severity of gait impairments in post-Covid-19 participants might be correlated with intensive care units-bedding period. Gait biomechanics assessment could be adopted in the clinical decision-making process to improve treatment protocols in post-Covid-19 survivors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.