Abstract

This scientific paper presents a novel approach of real-time signal analysis in electrocardiogram (ECG) monitoring systems, focusing on the integration of device design,algorithm implementation for accurate measurement and interpretation of heart activity. The proposed system leverages a low-cost framework, employing a microcontroller and Arduino programming language for raw ECG data acquisition, while utilizing the AD8232 sensor and ESP8266 Node MCU for continuous patient monitoring. The acquired data is processed, stored, and analyzed using the Pan-Tompkins algorithm, which effectively filters and analyzes heart signals, including noise reduction and QRS complex detection. Two case studies involving a healthy individual and a patient with Myocarditis were conducted to demonstrate the effectiveness of the system. The integration of device design and algorithm development in ECG analysis is emphasized, highlighting the affordability, wearability, and potential for continuous monitoring and early detection of heart conditions. By successfully mitigating noise-related challenges, the implementation of the Pan algorithm enables accurate signal analysis. This interdisciplinary research contributes to the advancement of ECG interpretation and underscores the significance of clinical fusion between designed systems and applied algorithms on real cases. The performance of two Pan-Tompkins based QRS complex detection algorithms was systematically analyzed, offering valuable insights for their reasonable utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call