Abstract

The automatic threshold tracking pacing system algorithm developed by St. Jude Medical, verifies ventricular capture beat by beat by recognizing the evoked response (ER) following each pacemaker stimulus. The present automatic threshold tracking function requires a bipolar ventricular lead with low polarization. The aim of this study was to evaluate a new algorithm developed to use with unipolar leads with different levels of polarization. An external pacemaker with the ability to sense intrinsic R waves and measure ER signals, as well as deliver stimulus, was used. An algorithm for detecting the true ER in a unipolar sensing configuration (tip-case) was developed. Based on the assumption that the true evoked R wave amplitude is independent of the stimulation amplitude, the algorithm calculates and subtracts the polarization present at any pacing stimulus from the measured ER. The resulting signal is analyzed to verify capture. This study comprises 35 patients of which 26 were new implants and 9 had chronic leads. The automatic threshold-tracking algorithm was calibrated for each patient and pacing was performed at different pulse amplitudes and pulse duration. Capture was verified for each paced beat. The recordings were stored for later comparison with the tape-recorded intracardiac heart signals. The new algorithm correctly verified capture or loss of capture for every single analyzed beat at the different pacing outputs in every individual patient. The results from this initial study suggests that the new ER detection principle will allow automatic threshold tracking to be used not only with low polarization bipolar leads but with most leads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.