Abstract

The coronavirus disease 19 (COVID-19) pandemic continues to impose a significant burden on global health infrastructure. While identification and containment of new cases remain important, laboratories must now pivot and consider an assessment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in the setting of the recent availability of multiple COVID-19 vaccines. Here, we have utilized the latest Abbott Alinity semiquantitative IgM and quantitative IgG spike protein (SP) serology assays (IgMSP and IgGSP) in combination with Abbott Alinity IgG nucleocapsid (NC) antibody test (IgGNC) to assess antibody responses in a cohort of 1,236 unique participants comprised of naive, SARS-CoV-2-infected, and vaccinated (including both naive and recovered) individuals. The IgMSP and IgGSP assays were highly specific (100%) with no cross-reactivity to archived samples collected prior to the emergence of SARS-CoV-2, including those from individuals with seasonal coronavirus infections. Clinical sensitivity was 96% after 15 days for both IgMSP and IgGSP assays individually. When considered together, the sensitivity was 100%. A combination of NC- and SP-specific serologic assays clearly differentiated naive, SARS-CoV-2-infected, and vaccine-related immune responses. Vaccination resulted in a significant increase in IgGSP and IgMSP values, with a major rise in IgGSP following the booster (second) dose in the naive group. In contrast, SARS-CoV-2-recovered individuals had several-fold higher IgGSP responses than naive following the primary dose, with a comparatively dampened response following the booster. This work illustrates the strong clinical performance of these new serological assays and their utility in evaluating and distinguishing serological responses to infection and vaccination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.