Abstract

ObjectiveFlow dephasing artifacts within intracranial internal carotid artery (ICA) have been problematic for 3D time-of-flight magnetic resonance angiography (3D-TOF-MRA). This study aimed to evaluate pointwise encoding time reduction with radial acquisition subtraction-based MR angiography (PETRA-MRA) for decreasing flow dephasing artifacts compared to 3D-TOF-MRA in intracranial segments of ICA at 3 T. MethodsSixty healthy participants and seven patients with intracranial ICA aneurysms were enrolled to undergo 3D-TOF-MRA and PETRA-MRA. Two radiologists each evaluated the image quality of healthy participants using a 4-point scale (1: the best and 4: the worst). Quantitative analysis of the extent of homogeneity in signal intensity within the ICA and intracranial aneurysms was conducted using a parameter d: the higher the d value, the greater the signal homogeneity. Wilcoxon signed rank test, Chi-square test and the weighted kappa (κ) statistic were used for statistical analyses. ResultsThe image quality of PETRA-MRA with an overall score of 1.35 ± 0.53 was significantly better than that obtained with 3D-TOF-MRA, with an overall score of 3.50 ± 0.62 (Z = -9.56, p < 0.001). The parameter d of PETRA-MRA was higher than that of 3D-TOF-MRA for both 60 healthy participants (0.97 ± 0.05, 0.87 ± 0.11; z = -13.21, p < 0.001) and 7 patients with intracranial aneurysms (0.81 ± 0.18, 0.74 ± 0.16; z = -2.37, p = 0.018). ConclusionCompared with conventional 3D-TOF-MRA, PETRA-MRA remarkably improved the image quality with reduced flow dephasing artifacts in segments of intracranial ICA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.