Abstract

BackgroundIn contemporary positron emission tomography (PET)/computed tomography (CT) scanners, PET attenuation correction is performed by means of a CT-based attenuation map. Respiratory motion can however induce offsets between the PET and CT data. Studies have demonstrated that these offsets can cause errors in quantitative PET measures. The purpose of this study is to quantify the effects of respiration-induced CT differences on the attenuation correction of pulmonary 18-fluordeoxyglucose (FDG) 3D PET/CT in a patient population and to investigate contributing factors.MethodsFor 32 lung cancer patients, 3D-CT, 4D-PET and 4D-CT data were acquired. The 4D FDG PET data were attenuation corrected (AC) using a free-breathing 3D-CT (3D-AC), the end-inspiration CT (EI-AC), the end-expiration CT (EE-AC) or phase-by-phase (P-AC). After reconstruction and AC, the 4D-PET data were averaged. In the 4Davg data, we measured maximum tumour standardised uptake value (SUV)max in the tumour, SUVmean in a lung volume of interest (VOI) and average SUV (SUVmean) in a muscle VOI. On the 4D-CT, we measured the lung volume differences and CT number changes between inhale and exhale in the lung VOI.ResultsCompared to P-AC, we found −2.3% (range −9.7% to 1.2%) lower tumour SUVmax in EI-AC and 2.0% (range −0.9% to 9.5%) higher SUVmax in EE-AC. No differences in the muscle SUV were found. The use of 3D-AC led to respiration-induced SUVmax differences up to 20% compared to the use of P-AC.SUVmean differences in the lung VOI between EI-AC and EE-AC correlated to average CT differences in this region (ρ = 0.83). SUVmax differences in the tumour correlated to the volume changes of the lungs (ρ = −0.55) and the motion amplitude of the tumour (ρ = 0.53), both as measured on the 4D-CT.ConclusionsRespiration-induced CT variations in clinical data can in extreme cases lead to SUV effects larger than 10% on PET attenuation correction. These differences were case specific and correlated to differences in CT number in the lungs.

Highlights

  • In contemporary positron emission tomography (PET)/computed tomography (CT) scanners, PET attenuation correction is performed by means of a CT-based attenuation map

  • Correlations We found a linear relation between the average local difference in CT number and difference in SUVmean in the volume of interest (VOI) in the lungs (ρ = 0.83) between EI-attenuation corrected (AC) and end-expiration CT (EE-AC)

  • In this study, we investigated the effect of respiration on 3D low-dose CT (3D-CT)-based attenuation correction of clinical pulmonary PET data, and we have related them to different factors

Read more

Summary

Introduction

In contemporary positron emission tomography (PET)/computed tomography (CT) scanners, PET attenuation correction is performed by means of a CT-based attenuation map. Respiratory motion can induce offsets between the PET and CT data. Studies have demonstrated that these offsets can cause errors in quantitative PET measures. The purpose of this study is to quantify the effects of respiration-induced CT differences on the attenuation correction of pulmonary 18-fluordeoxyglucose (FDG) 3D PET/CT in a patient population and to investigate contributing factors. Quantitative positron emission tomography (PET) imaging, and 18F-fluordeoxyglucose (FDG) in particular, has emerged as a useful tool for comparison between trial outcomes and better response monitoring [1]. Test-retest reliability for standardised uptake values (SUVs) is about 0.9 [2,3] and measurements of clinical responses on PET are only considered significant and reliable when larger than about 20% to 30% [4]. Respiratory motion is a major factor of image degradation, with clinical relevance in PET [6]. Respiratory motion can affect SUV measurement in two distinct ways

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call