Abstract

Lower extremity operative wounds can be difficult to treat and are associated with social challenges. New treatment options are needed to mitigate the clinical and social challenges and potentially lower the treatment cost and time. A synthetic hybrid-scale fiber matrix, which has an architecture similar to native tissue, a tailored resorption rate, and excellent durability and handling characteristics, is gaining popularity due to its effectiveness in treating different kinds of wounds. In this retrospective study, nine patients with a total of nine lower extremity wounds and multiple comorbidities were included. The hybrid-scale fiber matrix was cut to wound size, fenestrated as deemed appropriate, and secured to the wound bed using staples or sutures. Wound healing was monitored at subsequent visits, and the synthetic fiber matrix was re-applied as needed. Healing was considered complete when 100% epithelialization and closure of the wound site occurred. Overall, seven out of nine wounds exhibited complete healing and wound closure. For fully healed wounds, the average time to heal was 135.6 days, and good scar quality was observed. This retrospective case series demonstrates the versatility of synthetic hybrid-scale fiber matrices as part of an effective treatment regimen for difficult-to-treat lower extremity operative wounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call