Abstract

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis and hepatocellular carcinoma. Recently, HCV was classified into 6 major genotypes (GTs) and 67 subtypes (STs). Efficient genotyping has become an essential tool for prognosis and indicating suitable treatment, prior to starting therapy in all HCV-infected individuals. The widely used genotyping assays have limitation with regard to genotype accuracy. This study was a comparative evaluation of exact HCV genotyping in a newly developed automated-massively parallel sequencing (MPS) system, versus the established Line probe assay 2.0 (LiPA), substantiated by Sanger sequencing, using 120 previously identified-HCV RNA positive specimens. LiPA gave identical genotypes in the majority of samples tested with MPS. However, as much as 25% of LiPA did not identify subtypes, whereas MPS did, and 0.83% of results were incompatible. Interestingly, only MPS could identify mixed infections in the remaining cases (1.67%). In addition, MPS could detect Resistance-Associated Variants (RAVs) simultaneously in GT1 in 56.82% of the specimens, which were known to affect drug resistance in the HCV NS3/NS4A and NS5A genomic regions. MPS can thus be deemed beneficial for guiding decisions on HCV therapy and saving costs in the long term when compared to traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.