Abstract

We evaluated the disposable non-invasive SpotOn™ thermometer relying on the zero-heat-flux technology. We tested the hypothesis that this technology may accurately estimate the core temperature. The primary objective was to compare cutaneous temperature measurements from this device with blood temperatures measured with the pulmonary artery catheter. Secondary objective was to compare measurements from the zero-heat-flux thermometer indirectly with other routinely used thermometers (nasopharyngeal, bladder, rectal). We included 40 patients electively scheduled for either off-pump coronary artery bypass surgery or pulmonary thromboendarterectomy. Temperatures were measured using zero-heat-flux (SpotOn™), pulmonary artery catheter, nasopharyngeal, rectal, and bladder thermometers. Agreement was assessed using the Bland and Altman random effects method for repeated measures data, and Lin's concordance correlation coefficient. Accuracy was estimated (defined as <0.5° difference with the gold standard), with a 95% confidence interval considering the multiple pairs of measurements per patient. 17 850 sets of temperature measurements were analyzed from 40 patients. The mean overall difference between zero-heat-flux and pulmonary artery catheter thermometer was -0.06°C (95% limits of agreement of ± 0.89°C). In addition, 14 968 sets of temperature measurements were analyzed from 34 patients with all thermometers in situ. Results from the zero-heat-flux thermometer showed better agreement with the pulmonary artery catheter than the other secondary core thermometers assessed. In conclusion,the SpotOn™ thermometer reliably assessed core temperature during cardiac surgery. It could be considered an alternative for other secondary thermometers in the assessment of core temperature during general anesthesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call