Abstract

PurposeQuantitative MRI techniques such as T2 mapping are useful in comprehensive evaluation of various pathologies of the knee joint yet require separate scans to conventional morphological measurements and long acquisition times. The recently introduced 3D MIXTURE (Multi-Interleaved X-prepared Turbo-Spin Echo with Intuitive Relaxometry) technique can obtain simultaneous morphologic and quantitative information of the knee joint. To compare MIXTURE with conventional methods and to identify differences in morphological and quantitative information. MethodsPhantom studies were conducted, and in vivo human scans were performed (20 patients) presented with knee arthralgia. MIXTURE is based on 3D TSE without and with T2 preparation modules in an interleaved manner for both morphology with PDW and fat suppressed T2W imaging as well as quantitative T2 mapping within one single scan. Image quality and lesion depiction were visually assessed and compared between MIXTURE and conventional 2D TSE by two experienced radiologists. Contrast-to-noise ratio was used to assess the adjacent tissue contrast in a quantitative way for both obtained PDW and fat suppressed T2W images. Quantitative T2 values were measured in phantom and from in vivo knee cartilage. ResultsThe overall diagnostic confidence and contrast-to-noise ratio were deemed comparable between MIXTURE and 2D TSE. While the chosen T2 preparation modules for MIXTURE rendered consistent T2 values comparing to the current standard, measured cartilage T2 values ranged from 26.1 to 50.7 ms, with significant difference between the lesion and normal areas (p < 0.05). ConclusionsMIXTURE can help to provide high-resolution information for both anatomical and pathological assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.