Abstract

Background and purposeAutomated synthetic magnetic resonance imaging (MRI) provides qualitative, weighted image contrasts as well as quantitative information from one scan and is well-suited for various applications such as analysis of white matter disorders. However, the synthesized contrasts have been poorly evaluated in pediatric applications. The purpose of this study was to compare the image quality of synthetic T2 to conventional turbo spin-echo (TSE) T2 in pediatric brain MRI. Materials and methodsThis was a mono-center prospective study. Synthetic and conventional MRI acquisitions at 1.5 Tesla were performed for each patient during the same session using a prototype accelerated T2 mapping sequence package (TAsynthetic=3:07min, TAconventional=2:33min). Image sets were blindly and randomly analyzed by pediatric neuroradiologists. Global image quality, morphologic legibility of standard structures and artifacts were assessed using a 4-point Likert scale. Inter-observer kappa agreements were calculated. The capability of the synthesized contrasts and conventional TSE T2 to discern normal and pathologic cases was evaluated. ResultsSixty patients were included. The overall diagnostic quality of the synthesized contrasts was non-inferior to conventional imaging scale (P=0.06). There was no significant difference in the legibility of normal and pathological anatomic structures of synthetized and conventional TSE T2 (all P>0.05) as well as for artifacts except for phase encoding (P=0.008). Inter-observer agreement was good to almost perfect (kappa between 0.66 and 1). ConclusionsT2 synthesized contrasts, which also provides quantitative T2 information that could be useful, could be suggested as an equivalent technique in pediatric neuro-imaging, compared to conventional TSE T2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.