Abstract

To demonstrate that a T2 periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique using deep learning reconstruction (DLR) will provide better image quality and decrease image noise. From December 2020 to March 2021, 35 patients examined cervical spine MRI were included in this study. Four sets of images including fast spin echo (FSE), original PROPELLER, PROPELLER DLR50%, and DLR75% were quantitatively and qualitatively reviewed. We calculated the signal-to-noise ratio (SNR) of the spinal cord and sternocleidomastoid (SCM) muscle and the contrast-to-noise ratio (CNR) of the spinal cord by applying region-of-interest at the spinal cord, SCM muscle, and background air. We evaluated image noise with regard to the spinal cord, SCM, and back muscles at each level from C2-3 to C6-7 in the 4 sets. At all disc levels, the mean SNR values for the spinal cord and SCM muscles were significantly higher in PROPELLER DLR50% and DLR75% compared to FSE and original PROPELLER images (P < .0083). The mean CNR values of the spinal cord were significantly higher in PROPELLER DLR50% and DLR75% compared to FSE at the C3-4 and 4-5 levels and PROPELLER DLR75% compared to FSE at the C6-7 level (P < .0083). Qualitative analysis of image noise on the spinal cord, SCM, and back muscles showed that PROPELLER DLR50% and PROPELLER DLR75% images showed a significant denoising effect compared to the FSE and original PROPELLER images. The combination of PROPELLER and DLR improved image quality with a high SNR and CNR and reduced noise. Motion-insensitive imaging technique (PROPELLER) increased the image quality compared to conventional FSE images. PROPELLER technique with a DLR reduced image noise and improved image quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call