Abstract

We aim to construct a magnetic resonance imaging (MRI)-based multi-sequence multi-regional radiomics model that will improve the preoperative prediction ability of lymph node metastasis (LNM) in T3 rectal cancer. Multi-sequence MRI data from 190 patients with T3 rectal cancer were retrospectively analyzed, with 94 patients in the LNM group and 96 patients in the non-LNM group. The clinical factors, subjective imaging features, and the radiomic features of tumor and peritumoral mesorectum region of patients were extracted from T2WI and ADC images. Spearman's rank correlation coefficient, Mann-Whitney's U test, and the least absolute shrinkage and selection operator were used for feature selection and dimensionality reduction. Logistic regression was used to construct six models. The predictive performance of each model was evaluated by the receiver operating characteristic curve (ROC). The differences of each model were characterized by area under the curve (AUC) via the DeLong test. The AUCs of T2WI, ADC single-sequence radiomics model and multi-sequence radiomics model were 0.73, 0.75, and 0.78, respectively. The multi-sequence multi-regional radiomics model with improved performance was created by combining the radiomics characteristics of the peritumoral mesorectum region with the multi-sequence radiomics model (AUC, 0.87; p < 0.01). The AUC of the clinical model was 0.68, and the MRI-clinical composite evaluation model was obtained by incorporating the clinical data with the multi-sequence multi-regional radiomics features, with an AUC of 0.89. The MRI-based multi-sequence multi-regional radiomics model significantly improved the prediction ability of LNM for T3 rectal cancer and could be applied to guide surgical decision-making in patients with T3 rectal cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.