Abstract
Medical error is an adverse event of a failure in healthcare management, causing unintended injuries. Proper clinical care can be provided by employing a suitable clinical decision support system (CDSS) for healthcare management. CDSS assists the clinicians in identifying the severity of disease at the time of admission and predicting its progression. In this chapter, CDSS was developed with the help of statistical techniques. Modified cascade neural network (ModCNN) was built upon the architecture of cascade-correlation neural network (CCNN). ModCNN first identifies the independent factors associated with disease and using that factor; it predicts its progression. A case progressing towards severity can be given better care, avoiding later stage complications. Performance of ModCNN was evaluated and compared with artificial neural network (ANN) and CCNN. ModCNN showed better accuracy than other statistical techniques. Thus, CDSS developed in this chapter is aimed at providing better treatment planning by reducing medical error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.