Abstract

BackgroundDecision analysis techniques can be applied in complex situations involving uncertainty and the consideration of multiple objectives. Classical decision modeling techniques require elicitation of too many parameter estimates and their conditional (joint) probabilities, and have not therefore been applied to the problem of identifying high-performance, cost-effective combinations of clinical options for diagnosis or treatments where many of the objectives are unknown or even unspecified.MethodsWe designed a Java-based software resource, the Clinical Decision Modeling System (CDMS), to implement Naïve Decision Modeling, and provide a use case based on published performance evaluation measures of various strategies for breast and lung cancer detection. Because cost estimates for many of the newer methods are not yet available, we assume equal cost. Our use case reveals numerous potentially high-performance combinations of clinical options for the detection of breast and lung cancer.ResultsNaïve Decision Modeling is a highly practical applied strategy which guides investigators through the process of establishing evidence-based integrative translational clinical research priorities. CDMS is not designed for clinical decision support. Inputs include performance evaluation measures and costs of various clinical options. The software finds trees with expected emergent performance characteristics and average cost per patient that meet stated filtering criteria. Key to the utility of the software is sophisticated graphical elements, including a tree browser, a receiver-operator characteristic surface plot, and a histogram of expected average cost per patient. The analysis pinpoints the potentially most relevant pairs of clinical options ('critical pairs') for which empirical estimates of conditional dependence may be critical. The assumption of independence can be tested with retrospective studies prior to the initiation of clinical trials designed to estimate clinical impact. High-performance combinations of clinical options may exist for breast and lung cancer detection.ConclusionThe software could be found useful in simplifying the objective-driven planning of complex integrative clinical studies without requiring a multi-attribute utility function, and it could lead to efficient integrative translational clinical study designs that move beyond simple pair wise competitive studies. Collaborators, who traditionally might compete to prioritize their own individual clinical options, can use the software as a common framework and guide to work together to produce increased understanding on the benefits of using alternative clinical combinations to affect strategic and cost-effective clinical workflows.

Highlights

  • Decision analysis techniques can be applied in complex situations involving uncertainty and the consideration of multiple objectives

  • The software could be found useful in simplifying the objective-driven planning of complex integrative clinical studies without requiring a multi-attribute utility function, and it could lead to efficient integrative translational clinical study designs that move beyond simple pair wise competitive studies

  • All possible decision trees are represented as a single tree, and algorithms exist to define an optimal decision path based on the consideration of multiple objectives, the cost and benefit of which are ideally expressed as a common utility function

Read more

Summary

Introduction

Decision analysis techniques can be applied in complex situations involving uncertainty and the consideration of multiple objectives. Classical decision modeling techniques require elicitation of too many parameter estimates and their conditional (joint) probabilities, and have not been applied to the problem of identifying high-performance, cost-effective combinations of clinical options for diagnosis or treatments where many of the objectives are unknown or even unspecified. Classical decision analysis is a well-established field of primarily theoretical analytical inquiry that can shed light either on the optimality of decision in the face of complexity and uncertainty, or a series of decisions for a particular circumstance. All possible decision trees are represented as a single tree, and algorithms exist (e.g., roll-forward, roll-back) to define an optimal decision path based on the consideration of multiple objectives, the cost and benefit of which are ideally expressed as a common utility function. For a fully enumerated decision analysis, the full joint probability matrix should ideally be specified, but is rarely available, in which case uncertainty can be explored via sensitivity analysis

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.