Abstract
Purpose Based on computerized tomography (CT) radiomics and clinical data, a model was established to predict the prognosis of patients with gastrointestinal pancreatic neuroendocrine neoplasms (GP-NENs). Methods In the data collection, the clinical imaging and survival follow-up data of 225 GP-NENs patients admitted to Xiangyang No.1 People's Hospital and Jiangsu Province Hospital of Chinese Medicine from August 2015 to February 2021 were collected. According to the follow-up results, they were divided into the nonrecurrent group (n = 108) and the recurrent group (n = 117), based on which a training set and a test set were established at a ratio of 7/3. In the training set, a variety of models were established with significant clinical and imaging data (P < 0.05) to predict the prognosis of GP-NENs patients, and then these models were verified in the test set. Results Our newly developed combined prediction model had high predictive efficacy. Univariate analysis showed that Radscore 1/2/3, age, Ki-67 index, tumor pathological type, tumor primary site, and TNM stage were risk factors for the prognosis of GP-NENs patients (all P < 0.05). The area under the receiver operating characteristic (ROC) curves (AUC) of the combined model was significantly higher [AUC:0.824, 95% CI 0.0342 (0.751-0.883)] than that of the clinical data model [AUC:0.786, 95% CI 0.0384(0.709-0.851)] and the radiomics model [AUC:0.712, 95% CI 0.0426(0.631-0.785)]. The decision curve also confirmed that the combined model had a higher clinical net benefit. The same results were achieved in the test set. Conclusion The prognosis of patients with GP-NENs is generally poor. The combined model based on clinical data and CT radiomics can help to early predict the prognosis of patients with GP-NENs, and then necessary interventions could be provided to improve the survival rate and quality of life of patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Mathematical Methods in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.